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Abstract 
In this article we investigate the circumstances under which it makes sense for members at 
various stages of the product development value chain to develop shared understanding, or, 
alternatively, to operate as “mutually ignorant” specialists. After reviewing extant literature 
pertaining to this question, we propose a set of hypotheses, and develop a program of 
computational experimentation to test them. Our findings both replicate extant theoretical views 
concerning the substitutability of specialist and trans-specialist knowledge types, and also 
suggest that the two knowledge types can exist as complements. Compared to previous analytic 
models designed to shed light on this question, our findings offer a much finer-grained analysis 
along multiple dimensions of performance, including cost, schedule, product quality and 
component quality. For instance, our findings indicate that trans-specialist knowledge becomes 
increasingly beneficial as competitive strategy becomes more sensitive to product quality, as 
product designs become less modular, and as decision-making becomes less centralized. With 
this study we offer three main contributions. First, we critique extant theory relating to the 
substitutability of specialist and interspecialist knowledge. Second, we offer new conceptual 
thinking and hypothesis testing concerning the relative costs and benefits of employing the two 
knowledge types under different organization circumstances. Third, we apply an agent based 
computational simulation approach in our analysis, and discuss the power of this method in 
testing theory related to organizational knowing and learning.  

                                                           
1 We wish to thank our colleagues Bill Gates, Carl Jones, Ashwin Mahalingam, Tamaki Horii, John 
Chachere and Marc Ramsey for their helpful suggestions on this paper. The research described in this 
article is funded in part by the Office of Naval Research, Young Investigator Program 
(N0001401WR20304), and by the Command & Control Research Program, Center for Edge Power. 
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INTRODUCTION 
Knowledge is central to effective management and performance in the modern organization. In 

a resource-based view of the firm, knowledge is considered by many scholars (e.g., Cole 1998, 

Grant 1996, Spender 1996) to represent the most important resource a firm can hold. Indeed, 

knowledge offers a source of sustainable comparative advantage (Drucker 1995). Toward this 

end, the field of organization studies has undertaken substantial research on organizational 

knowing (e.g., Cook and Brown 1999) and learning (e.g., Levitt and March 1988).  

However, the bulk of this research focuses on theory building (e.g., Brown and Duguid 

1991, Kogut and Zander 1992, March 1991, Nonaka 1994, Thomas et al. 2001, Van den Bosch 

et al. 1999, Zollo and Winter 2002), and includes a dearth of theory testing (cf. Birkenshaw et al. 

2002), the latter of which is important also for cumulative theoretical development (Bacharach 

1989). The main explanation for this paucity of theory testing in organizations research centers 

on methodological problems—affecting both labwork (e.g., external validity, generalizability) and 

fieldwork (e.g., access, cost, internal validity, reliability). 

Recent advances in computational organization theory (e.g., see Burton et al. 2002, 

Carley and Lin 1997, Levitt et al. 1999, Lomi & Larsen 2001) offer promising potential to 

facilitate testing organizational knowing and learning theories. For instance, to represent and 

reason about organizational processes, one can conduct computational experiments with levels 

of rigor and control comparable to laboratory experimentation. This can support greater internal 

validity and reliability than is obtainable often through fieldwork. Computational experiments can 

be conducted also to examine myriad different organizational designs, including cases that have 

yet to be implemented in physical organizations (Nissen 2005). Moreover, organizational 

environments of substance are not manipulated easily in the field, and laboratory experiments 

are limited generally to micro-level organizational phenomena.  

In this article we apply computational experimentation to examine, test and extend a 

recent and controversial, theoretical article (Postrel 2002) pertaining to organizational knowing 
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and learning. Our research is motivated by an important question posed by Postrel: When is it 

necessary for adjacent stages of the value chain to invest in the development of shared 

understanding, and alternatively, when does it make sense for them to operate in mutual 

ignorance? This question is important, because it addresses an inherent challenge in the design 

of the product development value chain: If members in various stages are too specialized, they 

cannot coordinate effectively because they have different "thought worlds" or "interpretive 

schemes" (Dougherty 1992; Schein 1996); yet, if members lack sufficient specialization, they 

perform slowly, commit costly mistakes and fail generally to make meaningful contributions to 

the efficient attainment of strategic objectives. Indeed, just as specialists are needed to perform 

tasks efficiently, trans-specialists are required to ensure integrated performance in cross-

functional work (Rulke & Galaskiewicz 2000).  Thus, the inherent difficulty lies in aligning the 

value chain with appropriate quantities and distributions of specialists and trans-specialists to 

promote coordinated action that is both effective and efficient. 

Our examination and testing focus on controversial results from Postrel’s analytical 

model: that specialist and trans-specialist knowledge are substitutes in the domain of product 

development. A key implication of such substitutability is that trans-specialist knowledge (e.g., 

designers’ understanding of manufacturing, manufacturers’ understanding of design) is rarely 

important, given sufficient specialist capability on “either side”. However, the resultant metaphor 

islands of shared knowledge counters much current thinking in terms of knowledge transfer, 

inter-functional coordination, concurrent development and even matrix management for the 

organization of specialized work.  

Using a computational model that has benefited from extensive empirical validation, we 

replicate some basic results from this analytical model. Then, through a program of 

computational experimentation, we expand on these results, analyze realistic cases in which 

they fail to hold, and examine together important factors (e.g., knowledge, competitive strategy, 

centralization), which are largely unaddressed in combination by the literature. 
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Overall, our computational modeling approach enables a finer-grained set of theoretical 

insights than could be achieved with the analytical model. Thus, our findings shed new light on 

Postrel’s important question concerning the circumstances that necessitate trans-specialist 

knowledge in the value chain. In addition, our findings showcase the power and potential of 

computational modeling and simulation for conducting organizational research. 

The following section presents theoretical background and hypotheses, after which we 

describe our computational model, present the results, and draw conclusions. 

THEORETICAL BACKGROUND & HYPOTHESES 
We begin by summarizing key aspects of Postrel’s (2002) analytic model, as a basis to craft a 

null hypothesis. We then summarize relevant theory, and formulate hypotheses that 

complement, extend and compete with such analytic model. 

Islands of Shared Knowledge 
In order to investigate the relative contributions of specialist and trans-specialist knowledge to 

the performance of an organization engaged in product development, Postrel (2002) derived a 

two-parameter production function: M = zh/[zh + (1-z)(1-h)]. The expected payoff is represented 

by M, which corresponds to a distribution of design outcomes. Trans-specialist capability is 

represented by a single parameter h, which specifies the design actor’s probability of sending a 

producible design to its downstream counterpart in manufacturing; as h increases so does the 

likelihood that a specific design can be produced. Likewise, specialist capability is represented 

by a single parameter z, which specifies a manufacturing actor’s probability of making a 

successful product; as z rises so does the likelihood that a range of designs can be 

manufactured successfully.  

Notice that the production function returns the value 1, the maximum expected payoff, 

when either parameter z or h is 1; that is, when either knowledge type (i.e., specialist or trans-

specialist) is high, maximum payoff is assured for any value of the second knowledge type 
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greater than zero. Notice this production function also returns the value 1 when both parameters 

z and h are 1; that is, nothing is gained when both knowledge types are at high levels. Notice 

further the production function returns the value 0 (i.e., no payoff) if zero values are allowed for 

either parameter z or h; that is, no level of one knowledge type is sufficient to compensate for a 

complete absence of the other. According to the production function, these payoff relations are 

guaranteed. 

 Based on the results of the analytical model, Postrel concludes (pg. 310) that “Specialist 

capability and trans-specialist understanding are primarily substitutes in the design production 

function.” This constitutes the null hypothesis of our present study, 

H0: Specialist and trans-specialist knowledge can be substituted for one 
another without affecting performance. 

Hypothesis Development 
As with any nontrivial representation, the analytical model described above necessarily involves 

numerous assumptions. Some of these assumptions are realistic and helpful to make the 

mathematics tractable, and their inclusion seems relatively innocuous. Yet several others, which 

drive the principal results obtained, are questionable in terms of microeconomic and 

organization theory. Here we discuss seven assumptions, to which we take greatest exception, 

and articulate hypotheses that complement, extend and compete with results of the analytical 

model.  

1. Assumption of unidimensional performance 
The analytic model suggests that performance in the design production process can be 

measured along a single dimension, labeled the “expected payoff” (Postrel, 2002). However, 

studies of product development suggest instead that performance is a multi-faceted, omnibus 

concept with many trade-offs between sub-dimensions such as cost, time, component quality 

and product integration quality (eg. Smith and Reinertsen 1991, Bayus 1997). 

 5



Center for Edge Power – Working Paper 2006-1 

 This assumption of unidimensional performance is problematic, because it obscures 

finer-grained relationships between the two knowledge types and the individual sub-dimensions 

of performance.  For example, studies of product development indicate that trans-specialist 

knowledge—often labeled under other rubrics such as “system-wide understanding”, “cross-

functional expertise” or “interspecialty capability”—is necessary in order to avoid the kinds of 

catastrophic interfunctional glitches that lead to product integration failure (Allen and Cohen 

1967, Allen 1977, Cooper 1979, Carrol 1998, Hoopes and Postrel 1999). However, 

organizations like NASA provide evidence that increasing trans-specialist knowledge with the 

intention of producing a design with greater manufacturability can have the consequence of 

increasing design cycle time as more constraints are placed on requirements (Vaughan 1990). 

Finally, with respect to specialist knowledge, studies of human learning reveal that task-

repetition and functional-specialization reduce the likelihood of task-specific errors (Staddon 

1983). Based on these insights from theory, we draw our first set of hypotheses: 

H1a: Trans-specialist knowledge has benefits in reducing product integration risk, but 
does not contribute to a reduction in individual component risk;  

 
H1b: Increasing trans-specialist knowledge may actually increase—and not 
decrease—the schedule duration of the design activity. 

 
H1c: Specialist knowledge has benefits in reducing component risk, but does not 
contribute to a reduction in overall product integration risk.  

 

2. Assumption of hyper-substitutability of knowledge types 
The production function derived in the analytical model from above is not what one would 

expect ex-ante in terms of neoclassical microeconomics (see Pindyck and Rubinfeld 1998, 

Samuelson 1974). In particular, the production function derived in the analytical model produces 

many isoquants that are concave to the origin (Postrel 2002: 311). The implication is, the more 

of one type of knowledge used in a process, the greater its marginal productivity becomes, 

hence rendering the other type relatively less valuable. In the case of product development and 

the analytical model, as an organization gains substantial specialist knowledge, for instance, 
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gaining additional trans-specialist knowledge becomes decreasingly valuable, and vice versa. 

This denotes a condition of hypersubstitution: not only do two (or more) input factors of 

production—specialist and trans-specialist knowledge in this case—represent economic 

substitutes for one another, but normative decision rules and cost assumptions drive the level of 

one (or more) input factor toward zero. This is a central result of the analytical model. 

 In contrast, a more traditional class of production functions (e.g., the Cobb-Douglas 

function) reflect isoquants that are convex to the origin. Here levels of one or more input factors 

are traded off against other factors, depending upon their relative marginal rates of technical 

substitution (MRTS) and marginal costs (MC). Only in extreme cases would one input factor be 

driven merely by decision-making rules toward zero level in such arrangements. This represents 

a condition of substitution: input factors such as specialist knowledge and trans-specialist 

knowledge represent economic substitutes. Normative decision rules would suggest some 

combination of the two knowledge types, with specific levels determined by MRTS and MC. 

Moreover, many, diverse input factors can also represent economic complements: using 

more (or less) of one input factor benefits from using more (or less) of the other(s) also. To the 

extent that specialist knowledge and trans-specialist knowledge complement one another, then 

one can argue, economically, that more of both should be used in production; that is, levels of 

the input factors should covary according to normative decision rules. This can be the case 

even for classical productions functions such as the Cobb-Douglass (e.g., with nonnegative 

exponents suggesting supermodularity; see Milgrom and Roberts 1995, p. 183). Indeed, many, 

common, modern manufacturing approaches (e.g., lean manufacturing, flexible production, 

mass customization, design for manufacturing) seek to leverage just such complementary 

relations between input factors (Milgrom and Roberts 1990). Hence arguing microeconomically, 

we see little reason to assume the kind of hypersubstitution implied by the analytical model. This 

leads to our second set of hypotheses: 
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H2a: Specialist and trans-specialist knowledge used in product 
development may represent economic complements. 
 
H2b: Using predominately specialist knowledge in product development leads to 
inferior performance than when appreciable levels of trans-specialist knowledge 
are employed also. 

3. Assumption of “one-size-fits-all” competitive strategy 
The analytic model ignores the fact that different firms have different competitive 

strategies for how they position their products in the marketplace. Yet the strategy 

literature indicates that firms guided by a cost-leadership strategy maximize their payoff 

by producing low-cost products; whereas firms with a product-differentiation strategy 

excel by offering products of superior quality, novelty, technological sophistication, and 

like differentiating attributes (Porter 1980: 35-37). Porter explains that the effective 

execution of these generic strategies requires very different skills, resources and 

organizational capabilities. Competing on product cost alone is usually achieved through 

tight cost-control and the efficiencies of high-volume production by specialized factory 

workers (eg. modular home production). Quite the opposite, product differentiation is 

attained generally through a creative design process with strong cooperation across 

specialties (eg. custom-home production). Thus, a firm’s competitive strategy affects the 

marginal value of the different knowledge types. This leads to our third set of 

hypotheses: 

H3a: The greater the importance of low-cost production, the greater the 
importance of specialist relative to trans-specialist knowledge. 
 
H3b: The greater the importance of product quality, the greater the importance 
of trans-specialist versus specialist knowledge. 

4. Assumption of equal modularity across products 
The analytical model assumes that all product designs exist with an equivalent level of 

modularity between components. But research shows that product modularity is highly variable 

across products and in different phases of product evolution (Schilling 2000, Baldwin & Clark 

2000). Newer products tend to have larger numbers of more quickly evolving, component parts 

 8



Center for Edge Power – Working Paper 2006-1 

with intricate and changing interfaces, while more mature products tend to have fewer, more 

standardized interdependencies (Utterback 1996). As product modularity changes, so does 

organizational modularity (Sanchez and Mahoney 1996, Ethiraj and Levinthal 2004) and the 

marginal value of trans-specialists in the organization. When modularity is low, interspecialists 

are needed urgently to resolve negatively interacting sub-goals between components through 

the mechanisms of coordination and mutual adjustment (Thompson 1967; March and Simon 

1968). But as modularity rises, interspecialists become less important. More formally, 

H4: As product modularity rises, the marginal benefit of trans-specialist knowledge 
falls. 

5. Assumption of equal complexity across components 
The analytic model makes no distinction between the levels of complexity of different 

component parts in the value chain. Yet complexity is a key factor thought to influence cognitive 

task performance (Locke and Latham 1990, Simon 1981), and it is commonly believed that as 

complexity rises, it is necessary to employ increasingly talented specialists to produce 

components of a given level of quality (Campbell 1988). Thus, we draw a fifth hypothesis, 

H5: As product component complexity rises, the marginal benefit of specialist 
knowledge also rises. 

6. Assumption of sequential interdependence across work processes 
Product development in the analytical model involves only sequential interdependence between 

the design and manufacturing actors. Although some product development processes in 

practice do fit this sequential characterization, very few complex products are developed in this 

“over the wall” fashion. Most are conducted with some level of concurrency between the stages 

of the value chain (e.g., design-build, prototyping).  

From a performance standpoint, while concurrency brings a reduction in overall project 

duration, it also creates reciprocal interdependence between the design and manufacturing 

activities (Thompson 1967), which requires additional cost and effort to coordinate (March and 

Simon 1958). This introduces a time-cost tradeoff (Mustafa and Murphree 1989, Russel and 
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Ranasinghe 1991), for the cost of rework and increased product failure risk can exceed any 

savings gained through concurrent development (Stacey 1991, Kunz et al 1999, Salazar-Kish 

2001). With increasing levels of concurrency, spikes in coordination and rework intensify, and 

thus trans-specialist knowledge becomes increasingly important and beneficial in avoiding and 

resolving cross-functional glitches (Hoopes and Postrel 1999). All of these effects are ignored in 

the simple analytical model, and they lead to our sixth set of hypotheses. 

H6a: As the level of concurrency between design and manufacturing 
activities increases, schedule duration decreases, but costs rise, and 
product quality risks increase. 
 
H6b: As the level of concurrency between design and manufacturing 
activities increases, the importance of trans-specialist knowledge 
increases with respect to that of specialist knowledge. 

7. Assumption of equal centralization across organizations 
The analytic model is silent with respect to the impact of different organizational policies 

of centralization or decentralization on the need for trans-specialist knowledge. However, 

organizational theory suggests that as centralization increases, and as managers take 

more responsibility for discretionary decisions, then it becomes less important for lower 

level subordinates to understand all of the integration requirements of their work with 

other interdependent teams (Burton & Obel 2004). Alternatively, as centralization 

decreases, subordinates make more of their own decisions without consulting a 

supervisor, and thus it becomes more important that they have a system-wide 

understanding of the overall product architecture in order to avoid product-integration 

errors. Therefore, we draw a seventh and final hypothesis: 

H7: As decision making becomes more highly centralized to management, 
it becomes less important for subordinates to possess trans-specialist 
knowledge to achieve a given level of product quality. 
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COMPUTATIONAL MODELING BACKGROUND 
In this section we discuss briefly computational organization theory, and draw related material 

from Nissen and Levitt (2004) to provide an overview of our computational modeling approach. 

We then describe the computational model developed to test our hypotheses. 

Computational Organization Theory Research 
Computational organization theory (COT) is an emerging, multidisciplinary field that integrates 

aspects of artificial intelligence, organization studies and system dynamics/simulation (e.g., see 

Carley and Prietula 1994). Nearly all research in this developing field involves computational 

tools, which are employed to support computational experimentation and theorem proving 

through executable models developed to emulate the behaviors of physical organizations (e.g., 

see Burton et al. 2002, Carley and Lin 1997, Levitt et al. 1999).  

As the field has matured, several distinct classes of models have evolved for particular 

purposes, including: descriptive models, quasi-realistic models, normative models, and man-

machine interaction models for training (Cohen and Cyert 1965, Burton and Obel 1995). More 

recent models have been used for purposes such as developing theory, testing theory and 

competing hypotheses, fine-tuning laboratory experiments and field studies, reconstructing 

historical events, extrapolating and analyzing past trends, exploring basic principles, and 

reasoning about organizational and social phenomenon (Carley and Hill 2001: 87).  

Our research through the Virtual Design Team (VDT) is a branch of COT, built upon the 

planned accumulation of collaborative research over almost two decades to develop rich theory-

based models of organizational processes (Levitt 2004). Using an agent-based representation 

(Cohen 1992, Kunz et al. 1999), micro-level organizational behaviors have been researched 

and formalized to reflect well-accepted organization theory (Levitt et al. 1999). Extensive 

empirical validation projects (e.g., Christiansen 1993, Thomsen 1998) have demonstrated the 

representational fidelity, and shown how the qualitative and quantitative behaviors of VDT 

computational models correspond closely with a diversity of enterprise processes in practice. 
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The VDT research program continues today with the goal of developing new micro-

organization theory, and embedding it in software tools that can be used to design organizations 

in the same way that engineers design bridges, semiconductors or airplanes—through 

computational modeling, analysis and evaluation of multiple virtual prototypes. Clearly this 

represents a significant challenge. Micro-theory and analysis tools for designing bridges and 

airplanes rest on well-understood principles of physics (e.g., involving continuous numerical 

variables, describing materials whose properties are relatively easy to measure), and analysis of 

such physical systems yields easily differential equations and precise numerical computing. Of 

course, people, organizations and business processes differ from bridges, airplanes and 

semiconductors, and it is irrational to expect the former to ever be as understandable, 

analyzable or predictable as the latter. This represents a fundamental limitation of the approach. 

Within the constraints of this limitation, however, we can still take great strides beyond 

relying upon informal and ambiguous, verbal, theoretical descriptions of organizational behavior. 

For instance, the domain of organization theory is imbued with a rich, time-tested collection of 

micro-theories that lend themselves to qualitative representation and analysis. Examples 

include Galbraith's (1977) information processing abstraction, March and Simon’s (1958) 

bounded rationality assumption, and Thompson’s (1967) task interdependence contingencies. 

Drawing on this theory, we employ symbolic (i.e., non-numeric) representation and reasoning 

techniques from established research on artificial intelligence to develop computational models 

of theoretical phenomena. Once formalized through a computational model, the symbolic 

representation is “executable,” meaning it can be used to emulate organizational dynamics. 

Even though the representation has qualitative elements (e.g., lacking the precision 

offered by numerical models), through commitment to computational modeling, it becomes 

semi-formal (e.g., most people viewing the model can agree on what it describes), reliable (e.g., 

the same sets of organizational conditions and environmental factors generate the same sets of 

behaviors) and explicit (e.g., much ambiguity inherent in natural language is obviated). 
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Particularly when used in conjunction with the descriptive natural language theory of our extant 

literature, this represents a substantial advance.  

Additionally, although organizations are inherently less understandable, analyzable and 

predictable than physical systems are, and the behavior of people is non-deterministic and 

difficult to model at the individual level, it is known well that individual differences tend to 

average out when aggregated cross-sectionally or longitudinally. Thus, when modeling 

aggregations of people, such as work groups, departments, or firms, one can augment the kind 

of symbolic model from above with certain aspects of numerical representation. For instance, 

the distribution of skill levels in an organization can be approximated—in aggregate—by a Bell 

Curve; the probability of a given task incurring exceptions and requiring rework can be 

specified—organization wide—by a distribution; and the irregular attention of a worker to any 

particular activity or event (e.g., new work task or communication) can be modeled—

stochastically—to approximate collective behavior. As another instance, specific organizational 

behaviors can be simulated hundreds of times—such as through Monte Carlo techniques—to 

gain insight into which results are common and expected versus rare and exceptional. 

Of course, applying numerical simulation techniques to organizations is hardly new (Law 

and Kelton 1991). But this approach enables us to integrate the kinds of dynamic, qualitative 

behaviors emulated by symbolic models with quantitative metrics generated through discrete-

event simulation. It is through such integration of qualitative and quantitative models—bolstered 

by reliance on sound theory and devotion to empirical validation—that our approach diverges 

most from extant research methods, and offers new insight into the organizational dynamics. 

VDT Computational Modeling Environment 
The VDT computational modeling environment consists of the elements described in Table 1, 

and has been developed directly from Galbraith’s information processing view of organizations. 

This view of organizations, described in detail in Jin and Levitt (1996), has two key implications.  
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VDT Model
Element Element Description

Tasks Abstract representations of any work that consumes time, is required for project completion 
and can generate exceptions.

Actors A person or a group of persons who perform work and process information. 

Exceptions Simulated situations where an actor needs additional information, requires a decision from a 
supervisor, or discovers an error that needs correcting.

Milestones Points in a project where major business objectives are accomplished, but such markers 
neither represent tasks nor entail effort.

Successor 
links

Define an order in which tasks and milestones occur in a model, but they do not constrain 
these events to occur in a strict sequence. Tasks can also occur in parallel. VDT offers three 
types of successor links: finish-start, start-start and finish-finish.

Rework 
links

Similar to successor links because they connect one task (called the driver  task) with 
another (called the dependent  task). However, rework links also indicate that the dependent 
task depends on the success of the driver task, and that the project's success is also in some 
way dependent on this. If the driver fails, some rework time is added to all dependent tasks 
linked to the driver task by rework links. The volume of rework is then associated with the 
project error probability settings.

Task 
assignments

Show which actors are responsible for completing direct and indirect work resulting from a 
task.

Supervision 
links

Show which actors supervise which subordinates. In VDT, the supervision structure (also 
called the exception-handling hierarchy ) represents a hierarchy of positions, defining who a 
subordinate would go to for information or to report an exception.

 

Table 1  VDT Model Elements and Element Descriptions 
 

The first is ontological: we model knowledge work through interactions of tasks to be performed; 

actors communicating with one another, and performing tasks; and an organization structure 

that defines actors’ roles, and constrains their behaviors. Figure 1 illustrates this view of tasks, 

actors and organization structure. As suggested by the figure, we model the organization 

structure as a network of reporting relations, which can capture micro-behaviors such as 

managerial attention, span of control, and empowerment. We represent the task structure as a 

separate network of activities, which can capture organizational attributes such as expected 

duration, complexity and required skills. Within the organization structure, we further model 

various roles (e.g., marketing analyst, design engineer, manager), which can capture 

organizational attributes such as skills possessed, levels of experience, and task familiarity. 

Within the task structure, we further model various sequencing constraints, interdependencies, 
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and quality/rework loops, which can capture considerable variety in terms of how knowledge 

work is organized and performed.  

As also suggested by the figure, each actor within the intertwined organization and task 

structures has a queue of information tasks to be performed (e.g., assigned work activities, 

messages from other actors, meetings to attend) and a queue of information outputs (e.g., 

completed work products, communications to other actors, requests for assistance). Each actor 

processes such tasks according to how well the actor’s skill set matches those required for a 

given activity, the relative priority of the task, the actor’s work backlog (i.e., queue length), and 

how many interruptions divert the actor’s attention from the task at hand. 

The second implication is computational: work volume is modeled in terms of both direct 

work (e.g., planning, design, manufacturing) and indirect work (e.g., decision wait time, rework, 

coordination work). Measuring indirect work enables the quantitative assessment of (virtual) 

process performance (e.g., through schedule growth, cost growth, quality). 

Communications
to other actors“Out tray”

Actor“In tray”

Communications
from other actors

Direct Work

Communications
to other actors“Out tray”

Actor“In tray”

Communications
from other actors

Direct Work

Communications
to other actors
Communications
to other actors“Out tray”

Actor“In tray”

Communications
from other actors

Direct Work

“Out tray”

Actor“In tray”

Communications
from other actors
Communications
from other actors

Direct Work

 

Figure 1   Information Processing View of Knowledge Work 

VDT Computational Model Validation 

The VDT computational model has been validated extensively, over a period spanning almost 

two decades, by a team of more than 30 researchers in the VDT research group at Stanford 

University (Levitt 2004). This validation process has involved three primary streams of effort: 1) 
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internal validation against micro-social science research findings and against observed micro-

behaviors in real-world organizations, 2) external validation against the predictions of macro-

theory and against the observed macro-experience of real-world organizations, and 3) model 

cross-docking experiments against the predictions of other computational models with the same 

input data sets (Levitt et al. 2005). VDT is one of the few extant computational organization 

models that has been subjected to such a thorough, multi-method trajectory of validation. 

COMPUTATIONAL SIMULATION & HYPOTHESIS TESTING 
In this section we formulate a computational model of the product development process to 

replicate and critique Postrel’s (2002) analytic model, and to simulate additional scenarios to 

test our hypotheses. We then discuss our contributions to theory. But first, we describe the 

model set-up, and define the independent and dependent variables used in the analysis.  

Model Set-Up 
We use the VDT modeling environment to formulate a model reflecting the basic structure and 

behavior of the analytical model described in Postrel (2002). Beginning with structural aspects 

of the model, Figure 2 shows a screenshot of the POW-ER2 user interface. As with Postrel’s 

analytic model, this computational model includes only two tasks (i.e., manufacturing and 

design), each performed by a corresponding organizational unit (i.e., manufacturing actor and 

design actor), with bi-directional rework links to model Postrel’s requirement (pg. 308) that the 

model have “an interaction between the two specialists where the choices of one effect the 

performance of the other.” Including only two tasks is clearly a high-level modeling abstraction; 

VDT models of physical organizations in practice typically involve much more detail.  However, 

we specify this minimalist model in conformance with the analytic model, and following Postrel’s 

advice (pg. 308) that, “the idea is to take the simplest possible situation in which specialized 

                                                           
2 POW-ER ™ is a flexible and extensible computational organizational modeling and simulation environment that replicates and 
extends key features of VDT.  It was developed by Stanford University with funding from the Center for Edge Power at the Naval 
Postgraduate School in Monterey, CA, USA. 
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capability and trans-specialist understanding both matter.” Also for consistency with the 

analytical model, the organization structure reflects no management hierarchy or supervision 

links. 

 

Figure 2   VDT Product Development Model 
 

All VDT model parameters (e.g., team experience, centralization, formalization) are set 

to empirically determined nominal values for product development. Values for such parameters 

are held constant for all simulations discussed in this article, except as noted otherwise. 

The product development process is specified with a nominal work volume of 200 

person-days, which is held constant for all models and simulations discussed in this article. In 

VDT, simulated total work volume is determined stochastically (e.g., using Monte Carlo 

techniques) as a function of nominal work volume (an input) and several empirically determined 

factors that affect indirect work and productivity (e.g., actor skill, requirement complexity). 

Independent VDT Variables 
Table 2 describes the VDT parameters used to represent the set of independent variables 

included in our VDT model of the product development cycle. To represent behavioral aspects 

of the analytical model, we disaggregate specialist and trans-specialist knowledge with an 

approach that is both theoretically consistent and empirically grounded. We manipulate the 

single VDT parameter manufacturing skill to represent different levels of manufacturing 

specialist knowledge (z), and we manipulate the two VDT parameters designer role and  
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Independent 
Variable VDT Parameter Description 

  

Specialist 
expertise 

Actor skill level represents competence in performing a particular task type and 
reflects specialist expertise. The default skill is Generic, indicating the abilities of 
an average worker. Actors can be assigned other skills, such as Design, or 
Manufacturing, depending on their specific areas of expertise. An actor can have 
a high, medium, or low level of each skill. An actor’s skill level compared with the 
requirement complexity of a task affects task duration, cost, rework and functional 
risk, but not product risk. 

  

Trans-
specialist 
expertise 

Two VDT parameters are used to represent trans-specialist expertise. 1) Actor 
role represents competence in integration for a particular type of product. In VDT, 
actor role can be set at three levels, reflecting low, medium, or high levels of 
product integration expertise. With increasing levels of actor role settings, actors 
become more likely to rework project exceptions, instead of merely quick-fixing or 
ignoring them. 2) Application experience represents an actor's program level 
experience, which transcends specialist knowledge (i.e. is trans-specialist in 
nature).  In VDT, an actor can have a high, medium, or low level of application 
experience.  An actor's role, combined with application experience, represents 
trans-specialist capability. Together with solution complexity, these affect task 
duration, cost, rework and project risk, but not functional risk. Therefore, in VDT, 
an increase or decrease in trans-specialist understanding is modeled as a two-by-
two increase in the actor role and application experience parameters, both in 
unison. 

  

Task 
complexity 

Requirement complexity is used to represent task complexity. It is defined as the 
number of internal project requirements that a task must satisfy. Requirement 
complexity can be set at high, medium, or low levels.  A highly optimized design, 
for example, has many tasks with a high requirement complexity. Increasing 
requirement complexity increases task duration, cost, rework and functional 
exception levels.  

  

Product 
modularity 

Solution Complexity is used to represent product modularity (inversely). It is 
defined as the effect that a task has on the tasks that depend on it. Solution 
complexity can be set at high, medium, or low levels, representing low, medium 
and high levels of modularity, respectively. Higher solution complexity increases 
task duration, cost, rework and project exception levels.  

  
Actor salary Actor Salary describes an actor’s hourly wage. 
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Task 
concurrency 

Task Concurrency is the degree to which tasks are conducted in series or in 
parallel. When product development schedules are shortened to meet corporate 
goals, tasks that are usually performed sequentially must be performed in parallel. 
Coordinating parallel interdependent tasks is more difficult and costly than 
coordinating the same tasks performed sequentially because there is more rework 
and coordination. VDT builds on data from cases and analyses that assess the 
coordination and rework that arise from fast-tracking (Christiansen, 1993). 

  

Centralization 

Centralization reflects the degree to which decisions are made by senior actors or 
decentralized to individual responsible actors. High centralization means 
decisions are made by high-level actors. With low centralization, responsible 
positions tend to make their own decisions and there is thus less communication 
required. Centralization affects how often information is passed from lower to 
higher level actors, as well as how high that information goes up the hierarchy.  

 

Table 2   Independent Variables and Description of VDT Parameters 
 

designer application experience to represent different levels of trans-specialist knowledge (h). 

The correspondence between the VDT parameter manufacturing skill and the analytical model 

parameter z should be clear: greater manufacturing skill reflects greater specialist knowledge, 

and vice versa. This representation of z is theoretically consistent with Postrel’s argument (pg. 

309) that specialist knowledge improves an actor’s ability to “hit cost, quality and ramp-up 

constraints with a high fraction of possible designs.” Indeed, the manufacturing skill variable 

within the VDT model offers precisely this outcome—i.e., it reduces the cost, schedule and 

functional risk associated with completion of the manufacturing task.  

The correspondence between the VDT parameters actor role and actor application 

experience and the analytical model parameter h has a similar basis: greater product-integration 

expertise and programmatic experience reflect greater trans-specialist understanding. This 

representation of h corroborates Postrel’s stated but unmodeled conviction (pg. 308) that “trans-

specialist understanding reduces the likelihood that various functional specialties will create 

problems for one another (design, prototyping, engineering, manufacturing, marketing, etc.), or 

that groups assigned to work on one part of a product will create components that do not 
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interact properly.”  Indeed, the combination of application experience and actor role within the 

VDT model achieves  

Dependent  
Variable VDT Parameter Description 

  
Product 
development
time 

 
Simulated project duration (SPD) is the predicted time to perform a project, in 
working days, which includes both direct and indirect (i.e. coordination, rework 
and decision latency) work. 

  
Product 
development
labor cost 

 
Simulated labor cost (SLC) is the predicted cost of labor to perform a project, in 
dollars, which includes both direct and indirect (i.e. coordination, rework and 
decision latency) work.  

  

Functional  
risk 

Functional risk index (FRI) (or Component Quality Index), measures the risk to 
quality arising from functional exceptions. Functional exceptions are problems that 
affect only the task from which they arise. Any rework incurred applies only to that 
task. Rework links have no interaction with functional exceptions. In project work 
terms, FRI represents the likelihood that components produced by this project 
have defects based on rework and exception handling. Numerically, FRI is 
calculated as the fraction of effort needed to process ignored and quick-fixed 
functional exceptions normalized by the total effort to rework all predicted 
functional exceptions.  

  

Product  
risk 

Project risk index (PRI) (or Project Quality Index) measures the risk to quality 
arising from project exceptions. Project exceptions are problems that arise in a 
driver task that may have an effect on work in a dependent task linked to the first 
task via a rework link. In the absence of rework links, project exceptions have no 
meaning. In project work terms, PRI represents the likelihood that the 
components produced by this project will not be integrated at the end of the 
project, or that the integration will have defects based on rework and exception 
handling. PRI is thus a measurement of the success of system integration. 
Numerically, PRI is calculated as the fraction of effort needed to process ignored 
and quick-fixed project exceptions normalized by the total effort to rework all 
predicted project exceptions.  

 

Table 3   Dependent Variables and Description of VDT Parameters 
  
exactly this result—i.e., it improves the likelihood of successful product integration across 

functional specialties. Furthermore, these representations of z and h are also grounded 

empirically in research on operational organizations in practice. Such research was conducted 

during the development of VDT.  It indicates that, as manufacturers become more specialized, 
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they tend to produce products of greater quality. Likewise, as design staff becomes more senior 

and experienced, they tend to exhibit greater sensitivity to project integration requirements. In 

the next section, these variables are defined more formally, along with other variables that are 

used in the hypothesis testing exercise.  

Dependent VDT Variables 
Table 3 notes the VDT parameters used to represent the four dependent variables—product 

development time, labor cost, functional risk and product risk—in our model.  

Replicating Postrel’s Analytic Model of Product Development  
Recall the first hypothesis concerning the substitutability of specialist and trans-specialist 

knowledge. To address this we examine the production function implicit within our 

computational model. We say “implicit,” because the computational model is not developed with 

an explicit production function specified. Nonetheless, we can analyze model outputs to assess 

the interactions of “micro-behavior” assumptions embedded within the model. Here we examine 

the basic product development model described above. 

 Using well-accepted Monte Carlo techniques, each model is simulated 100 times, with 

means and variances computed from empirically derived statistical distributions (see Jin and 

Levitt 1996, Levitt et al. 2005 for details). In the data tables below, each cell provides the 

sample mean of 100 individual simulation trials. Statistical significance is computed using a 

single factor ANOVA test. Although such statistical inference from simulated performance data 

and predefined distributions remains one-off from the performance of operational organizations, 

it provides some sense of variation and hence significance, and it extends the analytical model 

of Postrel by testing hypotheses statistically. 
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Table 4a   Baseline Product Development Model – Results 

  SPD (days)* SPC ($K)** 
       

High h 326 262 210 $93 $75 $59 
Med. h 380 316 263 $109 $90 $75 
Low h 441 378 325 $127 $109 $94 

 Low z Med. z  High z Low z Med. z  High z 
* Differences in h and z both significant.3 
** Differences in h and z both significant. 
 
Table 4b   Baseline Product Development Model – Results 

  FRI (%)* PRI (%)** 
       

High h 0.63 0.39 0.32 0.47 0.47 0.46 
Med. h 0.62 0.42 0.31 0.60 0.60 0.62 
Low h 0.63 0.40 0.34 0.76 0.77 0.76 

 Low z Med. z  High z Low z Med. z  High z 
* Differences in h insignificant; differences in z significant. 
** Differences in h significant; differences in z insignificant. 
 

Computational results for the baseline model are summarized in Tables 4a and 4b.4 The 

values listed in Table 4a reflect simulated project duration (SPD), expressed in workdays, and 

simulated project cost (SPC), expressed in dollars (thousands: $K). For instance, notice the 

result in the middle of the SPD half of the table: a project staffed with actors possessing 

adequate levels of manufacturing specialist knowledge (i.e., medium z) and adequate levels of 

trans-specialist knowledge (i.e., medium h) is projected by the model to require 316 total days to 

complete. This reflects the nominal 200 days of work specified (i.e., work volume), along with 82 

non-work days (e.g., weekends), and 34 days of additional problem solving (e.g., internal 

communication, delay and exception handling associated with noise, uncertainty and errors). 

The additional 34 days’ problem solving time reflects empirically determined relationships 

between model parameters (e.g., levels of z and h) and organizational performance. Similarly, 

                                                           
3 Statistical significance reported at the 0.05 level. 
4Table 4 reports project level metrics.  VDT also provides task level metrics, but these are not reported 
because they lack comparability with the project level outputs of Postrel’s (2002) analytic model. 
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notice the result in the center of the SPC half of the table. The $90K project cost consists of 

$80K of direct work, $8K of rework, and $2K of coordination. 

The values listed in Table 4b reflect the functional risk index (FRI), expressed as the 

ratio of functional exceptions that are quick-fixed or ignored versus the total number of 

exceptions (i.e. the total of those that are quick-fixed, ignored and reworked), and the project 

risk index (PRI), expressed as the ratio of project exceptions that are quick-fixed or ignored 

versus the total number of exceptions. For instance, note the result in the middle of the FRI side 

of the table: a project staffed with actors with medium h and medium z is projected by the model 

to quick-fix or ignore 42% of functional exceptions over the course of a project. Likewise, notice 

the result in the center of the PRI half of the table: 60% of project exceptions are quick-fixed or 

ignored by the project decision makers. 

Tables 4a and 4b report full-factorial results of nine simulation models (each run 100 

times), with both the z (i.e., specialist knowledge) and h (i.e., trans-specialist knowledge) 

parameters varying across three levels: low, medium, and high. Notice in Table 4a that the 

simulation results vary as expected, and significantly, across the three levels of both z and h. 

For instance, holding the parameter h constant at the medium level of trans-specialist 

knowledge, performance in terms of both project duration and cost ranges from 380 days and 

$109K dollars when specialist knowledge is low, to 263 days and $75K when specialist 

knowledge is high. This mirrors the monotonic relationship between payoff and specialist 

knowledge described in the analytical model, and indicates the marginal product of such 

knowledge is positive (i.e., consistent with neoclassical microeconomic theory). This same 

monotonic relationship is exhibited also at the other levels of trans-specialist knowledge (i.e., 

low h, high h). Likewise, holding the parameter z constant at the medium level of specialist 

knowledge, performance in terms of project duration ranges symmetrically from 378 days and 

$109K dollars when trans-specialist knowledge is low, to 262 days and $75K dollars when 

trans-specialist knowledge is high. This mirrors the monotonic relationship between payoff and 
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trans-specialist knowledge described in the analytical model also, and is evident too at the other 

levels of specialist knowledge (i.e., low z, high z).  

The symmetry reflected in the results of Table 4a corresponds to the microeconomic 

case of perfect substitution: specialist and trans-specialist knowledge can be substituted—unit 

for unit—to maintain performance at some arbitrary level. For instance from the table, where 

specialist knowledge (z) is low, but trans-specialist knowledge (h) is medium, performance (380 

days, $109K dollars) is practically the same (378 days, $109K dollars) as where specialist 

knowledge (z) is medium, but trans-specialist knowledge (h) is low. Other instances of such 

substitutability can be identified readily through different combinations of knowledge types z and 

h (e.g., low z, high h <--> high z, low h [326 days, $93K], high z, medium h <--> medium z, high 

h [263 days, $75K]). With this our computational model results replicate the basic premise of the 

analytical model: specialist and trans-specialist knowledge can represent substitutes for one 

another. 

While the data in Table 4a reflect symmetry, the data in Table 4b do not afford such a 

matched pattern. Instead, we see that project risk is influenced primarily by trans-specialist 

knowledge h, and that functional risk changes principally in relation to the specialist capability 

parameter z. Compared to Postrel’s finding, this significant, non-symmetric result reveals a 

more complex and nuanced set of relations between the different kinds of knowledge and 

multiple dimensions of performance, which we discuss at length in our hypothesis testing below. 

In terms of computational experimentation, the significant, simulation results in Table 4a 

from above support our null hypothesis H0 (i.e., “specialist and trans-specialist knowledge can 

be substituted for one another without affecting performance”). With support for the null as such, 

we note three initial contributions from this work. First, through this computational experiment, 

we use VDT to replicate the basic findings articulated by Postrel’s (2002) analytical model; such 

replication increases our confidence in the analytical model and its implications. Second, 

through a model that has been validated empirically, we use VDT to show the basic premises of 
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the analytical model have some resemblance to the physical world; such computational 

validation likewise increases our confidence in the analytical model and its external validity. 

Third, through a computational model that captures the basic structure and behavior of the 

analytical model, we can extend the analysis to new cases not yet evaluated, factor in aspects 

of product development projects that reflect the real world better, and enrich the analysis with a 

much finer-grained set of measurement variables that represent multiple dimensions of 

performance including schedule, cost and the risk indices shown in Table 4b. 

Hypothesis Testing 
Hypothesis testing is organized into seven categories: 1) multi-dimensional performance, 2) 

microeconomic complementation, 3) competitive strategies, 4) product modularity, 5) 

component complexity, 6) concurrency, and 7) centralization. We address each in turn. 

1) Multi-Dimensional Performance 
The baseline results in Table 4b confirm that specialist knowledge (z) brings a significant 

reduction in the risk of functional errors (FRI), but that it does not impact the level of project 

integration risk (PRI). In contrast, while functional risk varies only negligibly across the three 

levels of trans-specialist knowledge, project integration risk falls substantially as interspecialist 

capability rises. These findings provide support for hypotheses 1a and 1c. With respect to 

budget and schedule, Table 4a indicates that both metrics drop sharply as we go from low 

levels to high levels of specialist knowledge in manufacturing (i.e., this drop is approximately 

30%, from 380 to 263 workdays and from $109K to $75K). Furthermore, when trans-specialist 

knowledge is increased in the design phase, both budget and schedule fall also. Thus, our 

model predicts that greater trans-specialist knowledge brings a reduction in both product 

integration risk and development time and cost. This finding, which disconfirms hypothesis 1b, 

also runs contrary to an important conclusion drawn after the Challenger shuttle disaster, which 
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was that a reduction in overall product risks often comes at the cost of a longer product 

incubation period (Vaughan 1990). 

2) Microeconomic Complementation 
Recall hypotheses 2a and 2b concerning the expected complementary interaction of the two 

knowledge types. From Tables 4a and 4b (above) we see that the two knowledge types are 

close substitutes, not complements, for both the SPD and SPC dimensions of performance. 

Thus, hypothesis 2a is not supported for the schedule and cost performance dimensions. 

Furthermore, our model suggests that the two knowledge types play very distinctive roles. While 

trans-specialist knowledge reduces the risk of product integration failures, specialist knowledge 

reduces the risk of functional failures; both knowledge types reduce labor cost and schedule 

duration. Thus, when enriching the analysis beyond cost and schedule variables, to reflect 

functional and project risks, the two knowledge types reflect complements, not substitutes, in 

the sense that they both contribute uniquely to an increased likelihood of new product success, 

or overall “expected payoff.” Thus, hypothesis 2a is supported for the functional- and project-risk 

performance dimensions. 

This result departs from that derived in the analytical model. Recall the analytical 

model’s production function specifies maximum performance can be attained when either 

knowledge type is high (e.g., z = 1, h = 1), and nothing is gained when both knowledge types 

are high. The same departure of results applies to low levels of knowledge. In contrast, the 

computational model reveals specialist and trans-specialist knowledge interacting even when 

both types are high or low. This provides some evidence to support hypothesis 2b (i.e., “Using 

predominately specialist knowledge in product development leads to inferior performance than 

when appreciable levels of trans-specialist knowledge are also employed”). In microeconomic 

terms, the marginal product of both specialist and trans-specialist knowledge remains positive 

always. 
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3) Competitive Strategies 
Given that the two knowledge types have different effects on the multiple dimensions of 

performance, our model suggests that firms will value the two knowledge types in accordance 

with their competitive strategy. When a firm is competing on price, and is relatively less 

concerned about product quality, for instance, the symmetric results in Table 4a suggest that 

the marginal-cost benefit of increased specialist knowledge is equivalent to that of increased 

trans-specialist knowledge, and that the best performance is achieved through symmetric, high 

levels of both knowledge types. This disconfirms hypothesis 3a. In contrast, if a firm is 

competing on product quality, and is relatively less concerned about price, for instance, then the 

asymmetric results in Table 4b suggest that the marginal benefit of increased specialist versus 

trans-specialist knowledge depends upon the extent to which component quality (i.e., as 

measured by FRI) or project quality (i.e., as measured by PRI) is stressed. This result elucidates 

nicely the different contributions of specialist knowledge and trans-specialist knowledge on 

quality and hence competitive strategy. As such, this result provides mixed support for 

hypothesis 3b. 

These simulated results fit closely with observations in practice of legendary firms like 

IDEO and Walt Disney, which attract, integrate and retain extremely diverse skill sets in order to 

build their differentiated product brands. The Walt Disney Imagineering website boasts the 

integration of more than 140 specialist disciplines! The IDEO corporate website claims that 

“multi-disciplinary teams are at the heart of the IDEO method,” and lists more than a dozen 

broad functional areas of expertise. Our simulation results confirm that in this type of product-

differentiated firm, integrating interspecialist capabilities to unify diverse skill sets is of great 

value. Likewise, our results suggest that for firms competing on cost, such as McDonalds 

restaurants, it is important to maintain both specialist and trans-specialist capabilities. 
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4) Product Modularity 
 
Tables 5a and 5b present ratios to show how project outcome metrics change as product 

modularity rises, which is represented in our VDT model by a decrease in solution complexity. 

These ratios reflect increases or decreases in normalized terms relative to the baseline results 

in Tables 4a and 4b. Notice in Table 5a that as product modularity rises, reflecting a decrease in 

the complexity of interface requirements between sub-components, then both duration and cost 

fall by 2% to 3% relative to the baseline. Project risk falls by between 14% and 21%, but 

functional risk is not nearly as sensitive to product modularity. Notice also that the extent of the 

drop in project risk is influenced by the level of trans-specialist knowledge. With lower levels, 

this drop is close to 20%; with higher levels, it is only about 15%. Likewise, for a decrease in 

product modularity (e.g., a less-mature product with more complex interface requirements) the 

results generated by VDT (not shown) are similar in magnitude but in the opposite direction. 

This result provides support for hypothesis 4, that the marginal value of trans-specialist 

knowledge falls as products become increasingly modular. 

Table 5a   SPD and SPC Ratios – High Product Modularity 
  % Change in SPD* % Change in SPC** 

       
High h -2% -3% -2% -2% -3% -3% 
Med. h -2% -2% -3% -2% -2% -2% 
Low h -2% -2% -2% -2% -2% -2% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline significant; differences in h and z both insignificant. 
** Differences relative to baseline significant; differences in h and z both insignificant. 
 

Table 5b   FRI and PRI Ratios – High Product Modularity 
  % Change in FRI* % Change in PRI** 

       
High h 2% 3% 0% -16% -14% -14% 
Med. h 0% -5% 6% -18% -18% -19% 
Low h -2% -2% 0% -19% -21% -19% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline insignificant; differences in h and z both insignificant. 
** Differences relative to baseline significant; differences in h significant; differences in z insignificant. 
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5) Component Complexity 
Tables 6a and 6b present ratios to show how project outcome metrics change as component 

complexity rises, which is represented in our VDT model by an increase in requirement 

complexity. These ratios reflect normalized changes relative to the baseline results in Tables 4a 

and 4b. Notice in Table 6a that as component complexity rises, reflecting more internal 

requirements that are “hidden” to all but that specific component (Baldwin and Clark 1997), then 

both duration and cost rise by 2% to 3% relative to the baseline. Functional risk rises by 

between 14% and 26%, but project risk is not nearly as sensitive to component complexity. 

Upon inspection, we see that the extent of this rise in functional risk is influenced by the level of 

specialist knowledge. At higher levels, this rise is near an average of 15%; whereas, with lower 

levels, it is approximately 22%. Analogously, for a decrease in component complexity the results 

generated by VDT (not shown) are in the opposite direction but of magnitude. This result 

provides support for hypothesis 5: the marginal value of specialist knowledge rises as product 

components become increasingly complex. 

Table 6a   SPD and SPC Ratios – High Component Complexity 

  % Change in SPD* % Change in SPC** 
       

High h 3% 3% 2% 2% 2% 2% 
Med. h 3% 3% 3% 2% 3% 2% 
Low h 3% 3% 2% 3% 3% 2% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline significant; differences in h and z both insignificant. 
** Differences relative to baseline significant; differences in h and z both insignificant. 
 
 
Table 6b   FRI and PRI Ratios – High Component Complexity 
 

  % Change in FRI* % Change in PRI** 
       

High h 20% 20% 16% 0% 4% 4% 
Med. h 20% 17% 14% 0% 0% -6% 
Low h 26% 21% 14% 1% 0% 1% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline significant; differences in h insignificant; differences in z significant. 
** Differences relative to baseline insignificant; differences in h and z both insignificant. 
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6) Reciprocal interdependence 
To test hypothesis 6, two different models were prepared. The first included a start-start 

successor relationship, so that the manufacturing task commenced just as the design task was 

75% complete, after which the two tasks are performed contemporaneously (i.e., 25% schedule 

concurrency). The second model followed the same logic, except that the degree of 

concurrency was set to 50%. Results of the eighteen simulations are summarized in Tables 7a 

through 7d, and are shown relative to the baseline results depicted in Tables 4a and 4b. Notice 

first that concurrent development requires less time than does the sequential development 

specified in the baseline model. For the case of 25% concurrency, this schedule reduction is in 

the range of 13% to 20%, and for the case of 50% concurrency, it is in the range of 23% to 34%. 

Notice second that as concurrency rises, the level of project risk (PRI) also rises. For the case 

of 25% concurrency, PRI rises by approximately 1% relative to the baseline model, and for the 

case of 50% concurrency it rises by about 3%. Although these rises appear small, they highlight 

the classic trade-off between time-to-market and product quality discussed in the product 

development literature (Bayus 1997). Notice third that as concurrency rises, the project labor 

costs rise reflecting greater amounts of re-work and coordination. This rise is in the range of 1% 

in the first case and 2% in the second case.  These results confirm support for hypothesis 6a, 

that with greater concurrency, overall schedule duration decreases, but at the cost of an 

increase in both product cost and quality risk. While the VDT model can replicate these trade-

offs, the results of the experiment do not confirm support for hypothesis 6b. There is no 

evidence suggesting that trans-specialist knowledge plays an increasingly important role in 

reducing product risk at higher levels of concurrency. 
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Table 7a   SPD and SPC Ratios – 25% Concurrency 

  % Change in SPD* % Change in SPC** 
       

High h -14% -16% -20% 0% 0% 1% 
Med. h -13% -17% -20% 1% 0% 1% 
Low h -13% -16% -19% 1% 0% 1% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline significant; differences in h insignificant; differences in z significant. 
** Differences relative to baseline insignificant; differences in h and z both insignificant. 
 
Table 7b   FRI and PRI Ratios – 25% Concurrency 
 

  % Change in FRI* % Change in PRI** 
       

High h -2% 3% -3% 2% 0% 2% 
Med. h -2% -2% 3% 0% 0% 0% 
Low h -2% -2% -3% 1% 0% 1% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline insignificant; differences in h and z both insignificant. 
** Differences relative to baseline insignificant; differences in h and z both insignificant. 
 

Table 7c   SPD and SPC Ratios – 50% Concurrency 
  % Change in SPD % Change in SPC 

       
High h -23% -27% -34% 1% 1% 2% 
Med. h -23% -27% -33% 2% 1% 2% 
Low h -23% -27% -32% 2% 0% 3% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline significant; differences in h insignificant; differences in z significant. 
** Differences relative to baseline significant; differences in h and z both insignificant. 
 
Table 7d   FRI and PRI Ratios – 50% Concurrency 

  % Change in FRI* % Change in PRI** 
       

High h 0% 3% 3% 2% 4% 4% 
Med. h 2% -5% 3% 3% 3% 2% 
Low h 2% -2% 0% 3% 1% 4% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline insignificant; differences in h and z both insignificant. 
** Differences relative to baseline significant; differences in h and z both insignificant. 
 

7) Centralization 
To test hypothesis 7, we altered the model set-up slightly, by adding a management actor with 

supervision links to the design and manufacturing actors. Then we performed two, 3x3, full-

factorial simulations, one with centralization set to low, and the other with centralization set to 
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high. The results are shown in Tables 8a to 8d, again relative to the baseline model. Upon 

inspection of Tables 8a and 8b, we see first that adding a management actor increases time 

and cost slightly, but reduces project risk significantly. This is the case, even when centralization 

is low, and the management actor is handling relatively few of the exceptions encountered by 

subordinates. Furthermore, we see in Tables 8c and 8d that at high levels of centralization, the 

duration and cost continue to rise a bit, but project integration risks fall considerably. Notice that 

at lower levels of trans-specialist knowledge, this effect is much stronger than it is at higher 

levels of trans-specialist knowledge. This occurs because, in the VDT model, the management 

actor plays a larger compensating role in exception handling for subordinates with low 

interspecialist experience than for subordinates with high interspecialist experience. Therefore, 

the evidence confirms that in a more centralized organization, it is relatively less important for 

subordinates to possess trans-specialist knowledge, and vice-versa. Based on this evidence, 

hypothesis 7 is supported. 

Table 8a   SPD and SPC Ratios – Management with Low Centralization 

  % Change in SPD* % Change in SPC** 
       

High h 3% 1% 1% 3% 3% 2% 
Med. h 2% 1% 2% 3% 2% 2% 
Low h 3% 3% 3% 3% 4% 4% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline significant; differences in h and z both insignificant. 
** Differences relative to baseline significant; differences in h and z both insignificant. 
 
Table 8b   FRI and PRI Ratios – Management with Low Centralization 

  % Change in FRI* % Change in PRI** 
       

High h 2% 5% 3% -23% -21% -17% 
Med. h 3% -5% 6% -23% -18% -19% 
Low h 0% -2% -6% -26% -27% -28% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline insignificant; differences in h insignificant; differences in z significant. 
** Differences relative to baseline significant; differences in h and z both insignificant. 
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Table 8c   SPD and SPC Ratios – Management with High Centralization 

  % Change in SPD* % Change in SPC** 
       

High h 3% 2% 1% 4% 4% 3% 
Med. h 5% 4% 4% 6% 6% 7% 
Low h 8% 8% 6% 9% 10% 10% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline significant; differences in h significant; differences in z insignificant. 
** Differences relative to baseline significant; differences in h significant; differences in z insignificant. 
 
Table 8d   FRI and PRI Ratios – Management with High Centralization 

  % Change in FRI* % Change in PRI** 
       

High h 2% 5% 0% -49% -45% -46% 
Med. h 2% -2% 0% -53% -52% -53% 
Low h 0% -5% 3% -63% -64% -67% 

 Low z Med. z  High z Low z Med. z  High z 
* Differences relative to baseline insignificant; differences in h and z both insignificant. 
** Differences relative to baseline significant; differences in h significant; differences in z insignificant. 
 

Summary 
For the most part, simulation results from our computational models support extant organization 

theory. This is to be expected, for the micro-behaviors used to develop such models are derived 

from information-processing views of organization theory. Likewise for the most part, simulation 

results from our computational models are consistent with organizational practice. This is also to 

be expected, for the micro-behaviors used to develop such models have been validated against 

organizational practice. Further, our initial basic result—that specialist and trans-specialist 

knowledge can represent substitutes—supports the central premise of the analytical model. This 

provides some computational support for the analytical model, and it provides analytical 

validation for the computational model. Through biangulation between the analytical and 

computational model results, we gain increased confidence in both approaches. 

 In contrast, the analytical model’s most controversial results are not consistent with 

those obtained through computational experimentation. Nor do many of its simplistic 

assumptions appear to generalize well from the tidy realm of mathematical analysis to the 

messy domain of organization knowing and learning. In particular we show: how multiple 
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performance metrics are necessary to assess the multidimensional and more nuanced 

influences that specialist and trans-specialist knowledge exert on organizational performance; 

how the relative costs and benefits of specialist and trans-specialist knowledge vary; how trans-

specialist knowledge can actually increase schedule duration as more constraints are placed on 

requirements; and how the two knowledge types interact, even when both types are high or low, 

as complements in some cases and as substitutes in others.  

In response to Postrel’s provocative question, “Under what circumstances is it necessary 

for specialists to develop mutual understanding?” we offer several theoretical insights. Our 

results indicate that trans-specialist knowledge becomes increasingly beneficial as competitive 

strategy becomes more sensitive to product quality, as product modularity declines, and as 

decision-making becomes less centralized. In contrast to his metaphor islands of shared 

knowledge, our computational experiments suggest how the alternate metaphor streams of 

shared knowledge appears to fit much better: Shared knowledge need not be omnipresent (e.g., 

consider oceans of shared knowledge), but it is important frequently for knowledge to flow 

across functional specialists.  

CONCLUSION 
Our contribution in this article to the organization studies literature is three-pronged. First, we 

expose a weakness in the existing body of theory through our critique of Postrel's analytic 

model. Second, we propose and test a set of hypotheses pertaining to Postrel’s central research 

question, and by doing so we provide a much finer-grained set of theoretical insights than was 

possible through the analytic model. Third, we apply computational experimentation in our 

analysis, which represents a relatively recent approach to testing theory related to 

organizational knowing and learning. We hope that other researchers are stimulated to conduct 

further research along these lines based on the power and potential of this method. 
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 We can imagine several situations that we were unable to test within the VDT modeling 

environment, under which trans-specialist knowledge becomes increasingly valued in 

organizations. When organizational conflict is high, it is likely that trans-specialist capability is 

important as a means to mediate between divergent “local languages” and “thought worlds.” 

When managers lack resources to hire sufficient specialists, such as during the early phases of 

entrepreneurial growth of small businesses, then it is likely that early hires who must “bootstrap” 

by simultaneously managing multiple roles and functions benefit from trans-specialist 

understanding. Moreover, when managers establish new organizations or functional-teams, it is 

likely that their ability to assemble a cooperative, non-redundant group of functional specialists 

rises with increasing levels of interspecialist knowledge. Finally, and more generally, in any 

situation where it is important for an organization to explore new product, process or market 

terrain, trans-specialist knowledge is probably beneficial to evaluate simultaneous disciplinary 

constraints (e.g., marketing, public relations and manufacturing constraints) that bear on overall 

decision making, but that are not yet well understood or formalized into codes, rules and 

procedures. 

These situations represent opportunities for future researchers to continue to explore the 

circumstances under which trans-specialist knowledge is valued most-highly in organizational 

settings. 
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